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Abstract

Background: Aberrations in DNA methylation are widespread in colon cancer (CC). Understanding origin and
progression of DNA methylation aberrations is essential to develop effective preventive and therapeutic strategies.
Here, we aimed to dissect CC subtype-specific methylation instability to understand underlying mechanisms and
functions.

Methods: We have assessed genome-wide DNA methylation in the healthy normal colon mucosa (HNM), precursor
lesions and CCs in a first comprehensive study to delineate epigenetic change along the process of colon carcinogenesis.
Mechanistically, we used stable cell lines, genetically engineered mouse model of mutant BRAFV600E and molecular biology
analysis to establish the role of BRAFV600E-mediated-TET inhibition in CpG-island methylator phenotype (CIMP) inititation.

Results:We identified two distinct patterns of CpG methylation instability, determined either by age–lifestyle (CC-neutral
CpGs) or genetically (CIMP-CpGs). CC-neutral-CpGs showed age-dependent hypermethylation in HNM, all precursors, and
CCs, while CIMP-CpGs showed hypermethylation specifically in sessile serrated adenomas/polyps (SSA/Ps) and CIMP-CCs.
BRAFV600E-mutated CCs and precursors showed a significant downregulation of TET1 and TET2 DNA demethylases. Stable
expression of BRAFV600E in nonCIMP CC cells and in a genetic mouse model was sufficient to repress TET1/TET2 and initiate
hypermethylation at CIMP-CpGs, reversible by BRAFV600E inhibition. BRAFV600E-driven CIMP-CpG hypermethylation occurred at
genes associated with established CC pathways, effecting functional changes otherwise achieved by genetic mutation in
carcinogenesis.

Conclusions: Hence, while age–lifestyle-driven hypermethylation occurs generally in colon carcinogenesis, BRAFV600E-driven
hypermethylation is specific for the “serrated” pathway. This knowledge will advance the use of epigenetic biomarkers to
assess subgroup-specific CC risk and disease progression.
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Background
Initiation and progression of cancer is facilitated by genetic
and epigenetic instability [1]. Carcinogenesis in the colon fol-
lows two distinct pathways. The “classical” polyp to cancer
model describes a progressive accumulation of genetic muta-
tions, transforming glandular epithelial cells to form tubular
adenomas (TAs), advanced adenomas, and ultimately, colon

cancer (CC) [2]. The alternative, “serrated” pathway accounts
for 15–30% of CC and sessile serrated adenoma/polyps
(SSA/Ps) are the likely precursors [3, 4]. Carcinogenesis along
this pathway is associated with the acquisition of a CpG is-
land methylator phenotype (CIMP), characterized by wide-
spread DNA hypermethylation in gene promoter-associated
CpG islands (CGIs) [5–7]. CC can be classified in CIMP-
and nonCIMP-CC, although there is no consensus with re-
spect to the hypermethylation status unambiguously defining
CIMP. CIMP- and nonCIMP-CC not only develop from dis-
tinct precursors, they also show distinct clinical and genetic
features. CIMP-CC typically occur in the proximal colon of
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elderly females, harbor a BRAFV600E mutation and often
show microsatellite instability (MSI) due to silencing of the
mismatch repair gene hMLH1 [8]. By contrast, nonCIMP-
CC show little preference in location and gender; are fre-
quently mutated in APC, KRAS, and TP53 genes; are micro-
satellite stable but often show chromosomal instability (CIN)
[9]. The heterogeneity in CC suggests that cell of origin, gen-
etic background, and environmental exposure shape the evo-
lution of cancers with distinct genetic and epigenetic
contributions and clinical features.
The genome–environment interactions underlying the

acquisition of genetic and epigenetic alterations during
lifetime and CC-carcinogenesis are poorly understood.
Despite the strong association between BRAFV600E and
CIMP-CC, a molecular mechanism underlying the forma-
tion of this cancer-subtype has not been identified. Only
recently, oxidative DNA demethylases, the ten-eleven
translocation protein family (TET1-3), have emerged as
key players in DNA hypermethylation in cancers of vari-
ous tissues [10–12]. In CC, TET1 silencing was shown to
be associated with BRAFV600E and with CIMP-CC and its
precursors [13], but mutations in TET genes are very rare
in CC [14].
In the clinical management of CC, cancer stratification

based on molecular subtyping has become an essential
to guide treatment decisions [15]. Recent gene
expression-based CC profiling identified four consensus
molecular subtypes that evolve through mainly two dis-
tinct routes, separating the “serrated” and the “classical”
pathways at the precursor stage [16, 17]. However, data
on the normal colonic epithelium of screening individ-
uals are too scarce to support a clear delineation of mo-
lecular events associated with the transformation of the
healthy normal mucosa (HNM) to cancers as well as to
determine the contribution of genetic and epigenetic fac-
tors to cancer initiation and progression along the two
separate precursor to CC pathways. A better under-
standing of the molecular mechanisms and signatures
associated with colon carcinogenesis, from the earliest
events in the HNM to invasive cancer is essential to de-
velop effective means for early detection and prevention
as well as for the CC therapy.
We have previously shown that CC-specific DNA

methylation changes are readily detectable in HNM [18,
19]. The aim of this study was to determine CC subtype-
specific DNA methylation signatures in females, decipher
their development in HNM and CC precursors, identify
mechanisms underlying cancer-associated methylation
change in carcinogenesis, and assess its significance for
carcinogenesis. To cover the entire spectrum of carcino-
genesis and achieve high cancer-specificity, we performed
genome-scale DNA methylation analysis of the HNM as a
reference to derive CC-specific DNA methylation signa-
tures and examined these in precursor lesion. This

identified two groups of CpGs showing distinct hyperme-
thylation properties, discriminating the CIMP from the
nonCIMP pathway of colon carcinogenesis. Age and life-
style exposure emerged as key factors of methylation
change at CpGs showing hypermethylation in all CCs,
whereas genetic deregulation of TET DNA demethylases
by oncogenic BRAFV600E was responsible for CIMP-
cancer initiation in the colon.

Results
DNA methylation signatures in colon cancer
We restricted our analysis to the samples from females
only, taken from either the proximal or the distal colon
(no rectum). All published data sets used in this study
were also following these criteria. To segregate DNA
methylation subtypes across CCs, we analyzed publicly
available Infinium HumanMethylation27K array (HM27K)
data on 56 cancers [20] of the proximal and distal colon of
female individuals and 178 biopsies of normal mucosa of
healthy females (HNM) [19]. We based our analysis on
the previous data on a cohort that included detailed life-
style information [19], which at that time was generated
on HM27K. Multidimensional scaling (MDS) showed a
clear separation of cancers from the HNM, except for one
cancer (Fig. 1a), which was therefore excluded from fur-
ther analyses. Unsupervised hierarchical clustering of the
DNA methylation data of the remaining 55 cancers identi-
fied two main clusters (Fig. 1b); cluster A contained all
cancers with a wild-type BRAF (BRAFWT) status, most of
them located in the distal colon (21/33, 63%), cluster B
mainly contained BRAFV600E-mutated cancers (14/22,
64%) located in the proximal colon (20/22, 91%). A sub-
stantial fraction of cluster A cancers was indeed previously
classified as nonCIMP (26/33, 79%) and cancers in cluster
B were classified as CIMP-high (19/22, 86%) [20]. We will
refer to cluster B as CIMP-CCs and to cluster A as
nonCIMP-CCs.
To define CC-subtype-specific DNA methylation signa-

tures, we compared the methylation profiles of CIMP-
and nonCIMP-CCs with those of HNM [19]. This identi-
fied 1519 CpGs showing hypermethylation and 839 CpGs
showing hypomethylation in nonCIMP-CCs, and 2981
CpGs showing hyper- and 484 showing hypomethylation
in CIMP-CCs (Fig. 1c). Because of the well-established
role of DNA hypermethylation in CC biology, we focused
further analyses on the hypermethylated CpGs. Amongst
all hypermethylated CpGs, 131 were specific for
nonCIMP-CC, 1593 for CIMP-CCs, and 1388 were com-
mon to both cancer-subtypes (Fig. 1d). Yet, 207 of these
commonly hypermethylated CpGs showed significantly
higher methylation levels in CIMP-CCs than in
nonCIMP-CCs. Given this, we defined two classes of
hypermethylated CpGs in cancer: (i) CIMP-CC-specific
CpGs (CIMP-CpGs), comprising 1800 (1593 + 207) sites
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uniquely hypermethylated in CIMP-CCs, and (ii) CC-
neutral-CpGs (CCN-CpGs), comprising all remaining
CpGs (1312; 131 + 1181) showing CC-specific hyper-
methylation but no CC-subtype specificity (Fig. 1e).
Unlike a previous analysis of CIMP cancer methylation
[20], where differential methylation was determined by
comparing CIMP- to nonCIMP-cancers, the assessment
here is based on a comparison of both cancer subtypes
to HNM as baseline. This method yielded an additional
571 CIMP-CpGs as well as 1116 previously unidentified

CCN-CpGs, showing hypermethylation in all CCs (Fig.
1f). We verified the discrimination power of the newly
defined CIMP- and CCN-CpG hypermethylation sites
by performing HM27K in an independent set of eight
cancers with paired normal mucosa (Fig. 1g). The
resulting CIMP- and CCN-CpG-based DNA methyla-
tion profiles clustered BRAFV600E cancers separately
from BRAFWT cancers and paired normal mucosa,
demonstrating the discrimination power of these DNA
methylation signatures.
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Fig. 1 DNA methylation identifies subtype-specific hypermethylation signatures in colon cancer. a Genome-wide methylation profiles measured
by HM27K in healthy normal colon mucosa and colon cancer. Multidimensional scaling (MDS) plot includes all probes on the array. b Recursively
partitioned mixture model (RPMM)-based unsupervised clustering of colon cancer (n = 55) methylation profiles from panel a. Heatmap shows β-
values of CpGs (5254) with SD > 0.16 across all samples (top variable probes). c Volcano plots show differential methylation analysis between
nonCIMP- and CIMP-CCs vs. healthy normal colon mucosa (HNM). Colored dots represent significant (P < 0.0001, fold change > 2, β-difference >
10%) hypomethylated (green) or hypermethylated (red). At the top number of significant CpGs and at the bottom number of samples are shown.
The x-axis denotes log2 fold changes in methylation relative to HNM and y-axis denotes −log10 of false discovery rate (FDR)-adjusted P value. d
Venn diagrams show comparisons of hypermethylated CpGs identified in nonCIMP-CC and CIMP-CCs. e The number of CC-neutral-CpGs (CCN-
CpGs) and CIMP-CC-specific CpGs (CIMP-CpGs). f Venn diagram shows comparisons of CCN-CpGs and CIMP-CpGs with previously published sites
methylated in CIMP-cancers (GSE25062). g Heatmap shows β-values of CCN-CpGs (1312) and CIMP-CpGs (1800) in eight cancers and paired normal tissues. h
Dot plots show methylation difference at CCN-CpGs and CIMP-CpGs between tubular adenoma (TA), sessile serrated adenoma/polyp (SSA/P), nonCIMP-CC, and
CIMP-CC from paired normal tissue (dashed line). Black circles show medians. P values were calculated with Wilcoxon rank-sum test. i Bar plot shows number of
CCN-CpGs and CIMP-CpGs hypermethylated over age in the HNM (left). P values and odds ratio (OR) were calculated with Fisher's exact test. Density plot shows
the rates of methylation change per 10 years of age (right). P values were calculated with Wilcoxon rank-sum test. Methylation rate ratio (MRR); median-
rateCCN-CpGs / median-rateCIMP-CpGs. j Density plot shows the difference in the rate of methylation change in HNM from aspirin users (≥ 2 years) or HRT users
(after age 50) to nonusers. P values were calculated with Wilcoxon rank-sum test. Methylation rate ratio (MRR); median-rateuser / median-ratenonuser
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Next, we compared the CC subtype-specific DNA
methylation signatures with methylation data available for
TAs and SSA/Ps [21, 22]. CIMP-CpGs showed no hyper-
methylation (< 5% median increase) in nonCIMP-CCs
(per definition) and TAs compared to normal mucosa
(Fig. 1h) but did show significant hypermethylation (17%
median increase, P = 7e-239) in SSA/Ps, which was fur-
ther increased in CIMP-CCs (28% increase, P < 2e-16). By
contrast, CCN-CpGs showed 20–30% median methylation
increase irrespective of cancer- and precursor-subtype
when compared to normal mucosa with levels increasing
from TAs to nonCIMP-CCs and from SSA/P to CIMP-
CCs. Thus, CIMP-CpG and CCN-CpG hypermethylation
starts early in CC carcinogenesis with CIMP-CpG methy-
lation discriminating the SSA/P-CIMP from the TA-
nonCIMP cancer pathways.
We then asked whether and how age and lifestyle factors

affect cancer subtype-specific DNA methylation drift in the
HNM. CCN-CpGs, but not CIMP-CpGs, were enriched in
sites previously identified as showing age-dependent hyper-
methylation in the HNM [19] (odds ratio [OR] = 6.7, P = 2e-
129; Fig. 1i). In addition, the median rate of age-dependent
methylation gain was higher at CCN-CpGs than at CIMP-
CpGs (methylation rate ratio [MRR] = 5.4, P = 2e-114).
Aspirin use and hormonal replacement therapy (HRT) sup-
pressed the rate of methylation change at CCN-CpGs
(MRRaspirin = 0.60, MRRHRT = 0.55) significantly more (as-
pirin, P = 4e-46; HRT, P = 9e-61) than at CIMP-CpGs
(MRRaspirin = 0.49, MRRHRT = 1.8; Fig. 1j). Taken together,
these results suggest that hypermethylation of CCN-CpGs is
driven by age and modulated by lifestyle, whereas hyperme-
thylation of CIMP-CpGs appears to follow a different pattern.
Given the strong association of colon cancer CIMP with
BRAFV600E, we explored the role BRAFV600E as a genetic cause
of CIMP-CpG hypermethylation and, hence, colon CIMP.

TET1 and TET2 are downregulated in BRAFV600E-mutated
colon cancers, precursor lesions, and cell lines
Molecular mechanisms underlying CIMP in cancer have
been intensely investigated. TET as DNA demethylating
proteins have emerged as key players in DNA hyperme-
thylation in acute myeloid leukemia, gliomas, and para-
gangliomas [10–12]. Epidermal growth factor receptor
(EGFR) and MAPK activation-mediated silencing of
TET1 was observed in cellular and animal models of
lung cancer [23], but the validity of such a mechanism
in human lung cancers is uncertain [24]. We investigated
the possibility of TET gene dysregulation in BRAFV600E-
mutated CIMP-CC and found that TET1 and TET2
mRNA levels were significantly reduced in SSA/Ps rela-
tive to TAs as well as in CIMP-CCs relative to
nonCIMP-CCs (Fig. 2a). We also included hMLH1, a
marker of colon CIMP, in the analysis; hMLH1 expres-
sion was significantly reduced in CIMP cancers but not

in SSA/Ps, consistent with its late inactivation in CIMP-
CC development. To substantiate TET gene downregu-
lation in CIMP-CCs, we performed immunohistochemi-
cal (IHC) analyses; BRAFV600E-mutated (by inference
CIMP) CCs showed a significantly lower proportion of
TET1 expressing cells (median 0%) than KRASG12/13-
mutated (median 30%), or BRAF and KRAS wild-type
cancers (BRAFWT/KRASWT; median 60%; Fig. 2b). The
trend was the same for TET2; TET2 positive cells were
fewer in cancer with BRAFV600E (median 60%) than
without BRAFV600E (KRASG12/13, median 100%;
BRAFWT/KRASWT, median 80%). Downregulation of
TET1 but not TET2 in BRAFV600E tumors was con-
firmed using TCGA RNA-seq data of 274 colon cancers
samples from females (Additional file 1: Figure S1). This
association seems to be specific for females and not ob-
served when samples from males and rectum were also
included.
Notably, TET1 and TET2 were hypermethylated in

CIMP-CC compared to nonCIMP-CC or normal mucosa
but not in precursor lesions, where expression was down-
regulated (Fig. 2c). As expected, the distal promoter region
of hMLH1, which acquires methylation early in CIMP car-
cinogenesis without affecting gene expression [25, 26] was
hypermethylated in both SSA/P and CIMP-CC compared
to TA and nonCIMP-CC, respectively. We confirmed
these findings by bisulfite-pyrosequencing of promoter-
associated CGIs (Fig. 2d). These results suggested that
TET1 and TET2 repression occurs at an early stage in
CIMP-CC development, preceding the hypermethylation
of their promoters, while hMLH1 is still expressed. In
CIMP-CCs, however, the TET genes gain methylation and
are further decreased in expression, suggesting that TET
downregulation undergoes epigenetically stabilization dur-
ing tumor progression.
We then corroborated the relationship between CIMP,

BRAFV600E and TET downregulation in CC cell lines. Un-
supervised hierarchical clustering on the basis of CIMP-
CpGs (Fig. 1e) methylation separated BRAFV600E cell lines
(HT29, Colo205, Co115) from BRAFWT (Colo320, Caco2)
or KRASG12V (SW620) cell lines (Fig. 3a). Notably, CIMP-
CpGs showed markedly higher methylation in BRAFV600E

than in BRAFWT cell lines, while CCN-CpGs were simi-
larly hypermethylated in all cell lines. TET1 mRNA ex-
pression was significantly reduced in all BRAFV600E

compared to BRAFWT or KRASG12V cancer cells or nor-
mal colon epithelial cells (CCD841CoN, Fig. 3b), and this
downregulation was correlated with increased DNA
methylation in the TET1 promoter (Fig. 3c). TET2 expres-
sion was generally low in all cell lines except Colo320 (Fig.
3b), the TET2 promoter showed hypermethylation both in
BRAFV600E and BRAFWT cell lines (Fig. 3c). As expected,
hMLH1 was downregulated and hypermethylated in the
distal promoter in Co115, to a lesser extent in HT29 but
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not in Colo205 (Fig. 3b, c), consistent with the previously
shown heterogeneity of hMLH1 silencing in BRAFV600E

CIMP cancers and SSA/Ps [13, 27, 28]. Treatment of
Colo320 and Co115 cells with the DNA methyltransfer-
ases inhibitor 5-azacytidine increased the expression of
TET1 and, as expected, hMLH1 but did not affect TET2
(Fig. 3d), demonstrating that DNA methylation directly
controls TET1 rather than TET2 silencing. Immunoblots
confirmed reduced levels of TET1 in Co115 and Colo205
compared to Caco2 and Colo320 (Fig. 3e). Notably, the

normal epithelial cell line CCD841CoN showed low ex-
pression of full-length TET1 (TET1FL) but high levels of
an alternative isoform (TET1ALT) [29] instead. Immuno-
blots for TET2 detected both known isoforms with levels
varying between nonCIMP and CIMP cell lines (Fig. 3e),
as predicted from the variable mRNA expression.
Consistent with reduced TET activity, global levels of

5hmC were lower in the BRAFV600E than in BRAF wild-
type cancer cells or normal colon epithelial cells (Fig. 3f).
These results show that CC cell lines partially recapitulate
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Fig. 2 TET1 and TET2 are suppressed in SSA and CIMP-CC carrying BRAFV600E. aTET1, TET2, and hMLH1 mRNA expression, presented as relative
expression compared to paired normal mucosa. P values were calculated with Welch two sample t-test and error bars denote SD. b IHC of TET1
and TET2 in healthy normal mucosa (HNM) and cancers with wild type BRAF and KRAS (BRAFWT/KRASWT), mutated BRAF (BRAFV600E/KRASWT) or
KRAS (BRAFWT/KRASG12/13). Representative example for each category (left) with quantitation (right) showing in red mean (circle) and median
(line). P values were calculated with Wilcoxon rank-sum test. c β-values at TET1 and TET2 measured by HM27K. P values were calculated with
Wilcoxon rank-sum test. d DNA methylation at TET1, TET2, and hMLH1 promoter-CGIs by bisulfite-pyrosequencing in samples from panel a.
Schematic shows 6 sequencing regions (R1–R6) within TET1 (nt − 16 to + 800), 3 sequencing regions (R1–R3) within TET2 (nt − 140 to + 566) and
3 sequencing regions (R1–R3) with in distal promoter of hMLH1 (nt − 1080 to + 200) with primer positions (arrows), CpGs (black vertical lines),
CpGs not analyzed (grey vertical lines), transcription start sites (TSS, red). Scatter plots of mean methylation levels for each CpG (left) and boxplots
of the resultant methylation levels (right). P values were calculated with Wilcoxon rank-sum test. TA tubular adenoma, SSA/P sessile serrated adenoma/polyp
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Fig. 3 TET1 is suppressed in BRAFV600E cancer cell lines. a Unsupervised hierarchical clustering using DNA methylation levels of CCN-CpGs (1312)
and CIMP-CpGs (1800) in colon cancer cell lines measured by HM27K/HM450K. Shown are the CpGs that were present on both arrays. Heatmap
of the β-values (upper) with boxplot of resultant β-values (lower). Note the increase DNA methylation in cell lines with BRAFV600E. bTET1, TET2, and
hMLH1 mRNA expression in colon cancer and in normal colon epithelial cell lines (CCD841CoN). Error bars denote SD (n = 3). Primers were
designed to measure both isoforms of TETs. c β-values of TET1 and TET2 CpGs measured by HM27K/HM450K. dTET1, TET2, and hMLH1 mRNA
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DMSO. P values were calculated with Welch two sample t-test. Error bars denote SD (n = 3). e Western blot analysis of TET1 and TET2. Indicated
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two (for TET2) independent experiments. f Levels of 5hmC measured by dot blot analysis with methylene blue staining (DNA) as loading control
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the TET expression and promoter methylation features of
cancers with a corresponding BRAF mutation status, in
particular the consistent repression of TET1FL in the pres-
ence of a BRAFV600E.

BRAFV600E represses TET and causes hypermethylation at
CIMP genes
To investigate whether BRAFV600E is sufficient for TET1/
TET2 repression and hypermethylation at CIMP-CpGs, we
transduced Colo320 and Caco2 cells with a lentivirus ex-
pressing BRAFV600E (brafV600E) or a GFP (gfp) as a control.
Both these CC cell lines are wild types for BRAF and showed
low levels of CIMP-CpG methylation (Fig. 3a). Expression of
BRAFV600E was confirmed at day 14 following transduction;
relative BRAFV600E expression reached higher levels in
Colo320-brafV600E than in Caco2-brafV600E but was in a plus/
minus two-fold range of levels observed in Co115 with con-
stitutive BRAFV600E expression (Fig. 4a). BRAFV600E caused
downregulation of TET1 and TET2 in both cell lines with
magnitude of downregulation inversely correlating with
BRAFV600E expression (Fig. 4b). Bisulfite-DNA sequencing
revealed that CGIs in the TET1 and TET2 promoters, show-
ing hypermethylation in SSA/P and CIMP-CC (Fig. 2d), did
not gain methylation upon ectopic expression of BRAFV600E

(Fig. 4c).
We then addressed the effect of BRAFV600E expression

on genome-wide DNA methylation. BRAFV600E-trans-
duced cell lines, when compared to their respective gfp
controls, exhibited widespread gains (hyper) and losses
(hypo) of DNA methylation (Fig. 4d). CpGs undergoing
hypermethylation in both BRAFV600E-transduced cell lines
showed a significant overlap with CIMP-CpGs identified
in CCs (Fig. 4e). Included in this overlap were 9 out of 10
CIMP markers of a panel previously proposed by Hinoue
and coworkers [20] (B3GAT2, KCNK13, RAB31, SLIT1,
FAM78A, FSTL1, KCNC1, MYOCD, and SLC6A4). When
assessed methylation change at single CpG resolution at
the promoters of these genes, discontinuous patterns of
methylation, including both hyper- and hypomethylation
were observed (Fig. 4f) that altogether were associated
with downregulated expression of the respective genes in
brafV600E vs. gfp-control (Fig. 4f). Expression analysis of
five additional CIMP-CpG-associated genes identified in
Fig. 1 (DKK3, IGFBP7, NEGR1, FOXE3, and GREM1) also
showed downregulation in brafV600E-transduced cells (Fig.
4g). hMLH1, showing some hypermethylated CpGs on its
distal promoter in brafV600E-transduced cells, was not
downregulated (Fig. 4g). Consistently, MAFG, a transcrip-
tional repressor that was shown to mediate silencing of
hMLH1 in CC, was not induced in the brafV600E-trans-
duced cell lines (Additional file 1: Figure S2).
Next, we tested whether inhibition of BRAFV600E

would restore TET expression. Treating Co115 cells with
a sub-toxic concentration of PLX4032 (Vemurafenib, 2

μM), a specific BRAFV600E inhibitor, increased TET1 and
TET2 mRNA levels after 2 days and up to 56 days of
treatment (Fig. 4h), as well as protein levels measured at
14 days of treatment (Fig. 4h). The effect of PLX4032
was reversible; withdrawal of the drug after 28 days was
accompanied by a reduction of TET transcripts to start-
ing levels (Fig. 4h). PLX4032 treatment resulted in no
detectable change in global 5hmC at 2 days but showed
a pronounced increase at 14 days (Fig. 4i). Notably,
PLX4032 treatment also decreased TET1 promoter
methylation in a time-dependent manner (Fig. 4j). Taken
together, these results show that ectopic BRAFV600E ex-
pression transcriptionally downregulates TET1 and
TET2 independent of methylation changes in their pro-
moter. TET inactivation then gives rise to DNA methy-
lation changes that include the hypermethylation and
silencing of typical CIMP target genes. Hypermethyla-
tion at TET promoters appears to be a progressive and
later event that stabilizes their silenced state in CIMP
tumorigenesis.

Oncogenic BRAF expression in the mouse small intestine
causes TET silencing and DNA hypermethylation
To recapitulate BRAF-dependent TET silencing in vivo,
we examined tissues from a previously established mur-
ine BrafLSL-V637E/+Vil-Cre+/- knock-in mouse model [30].
The V637E mutation in mouse Braf is functionally
equivalent to the V600E mutation in human BRAF, and
the Vil-Cre transgene facilitates the Cre-induced activa-
tion of BrafLSL-V637E specifically in the epithelia of the
small and large intestine of the knock-in mice [31].
BrafV637E expression in these mice gave rise to extensive,
generalized, and persistent hyperplasia in the intestine
[31]. We examined Tet1 and Tet2 expression in the mu-
cosa of the proximal small intestine from mutant
BrafV637E (mean age 60 weeks) and BrafWT mice (mean
age 64 weeks). Tet1 and Tet2 mRNA levels were signifi-
cantly lower in the hyperplastic BrafV637E mucosa when
compared to the normal mucosa of wild-type mice;
Mlh1 expression was not affected (Fig. 5a). As in human
SSA/Ps, transcriptional repression of the Tet genes was
independent of hypermethylation of their promoter
CGIs (Additional file 1: Figure S3). Yet, Tet repression
was accompanied by changes in DNA methylation else-
where. Analysing six tissue samples on mouse CGI plus
promoter tiling arrays (Roche NimbleGen Inc.), we iden-
tified 1178 probes showing differential methylation be-
tween BrafWT and the BrafV637E mice. Amongst these,
744 were hypermethylated and 434 hypomethylated in
the BrafV637E mice (Fig. 5b). Notably, the median methy-
lation level was significantly higher in BrafV637E older
mice (> 55 weeks) than in younger mice (< 13 weeks),
consistent with a recent observation of a gradual in-
crease in DNA methylation following BrafV637E
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(See figure on previous page.)
Fig. 4 Ectopic expression of BRAFV600E represses TET1 and TET2 and causes DNA hypermethylation. a Lentiviral BRAFV600E mRNA expression in BRAFV600E

(brafV600E) and control (gfp)-transduced Colo320 and Caco2 cell lines normalized to GAPDH and ACTB. Co115 cell constitutively expressing BRAFV600E is used as
reference. bTET1 and TET2mRNA expression (upper) with Western blot analysis of protein levels (lower) in cells from panel a. P values were calculated with
Welch two-sample t-test. Error bars denote SD (n = 2). Protein signal quantified by image studio software is relative to gfp. Shown are the representative blot
from two independent experiments. c DNA methylation at TET1 and TET2 promoter-associated CGIs by bisulfite-pyrosequencing in cells from panel a.
Representation is as in Fig. 2b. d Genome-wide methylation profiles in cells from panel a. Shown are the number of hyper (red) and hypo (green) methylated
CpGs. To make analysis comparable between platforms, only CpGs corresponding to HM27K are shown. e Venn diagrams show overlap of hypermethylated
CpGs from panel d with CIMP-CpGs identified in colon cancers in Fig. 1. Calculated Fisher's exact test are reported as well as associated odds ratios. f
Methylation levels at CIMP markers of a panel previously proposed by Hinoue and coworkers (B3GAT2, KCNK13, RAB31, SLIT1, FAM78A, FSTL1, KCNC1, MYOCD,
and SLC6A4) and hMLH1 in Colo320 brafV600E and gfp cells from panel a. Shown are all CpGs present on the array for the corresponding gene; hypermethylated
(red), hypomethylated (green) or none (black). g The mRNA expression levels of 12 CIMP-CpG-associated genes in brafV600E cells relative to gfp. P values were
calculated with Welch two sample t-test. Error bars denote SD (n = 2). hTET1 and TET2mRNA expression (upper) in Co115 cells treated with 2 μM PLX4032
(grey) or DMSO (black) for 56 days. At 28 days, cultures were continued with (straight line) or without PLX4032 (dotted line). Shown are expression levels relative
to DMSO. Day 0 is shown in open circles. P values were calculated with Welch two sample t-test. Error bars denote SD (n = 5). Western blot for TET1 and TET2
at 14 days in two represented replicates. Protein signal quantified by image studio software is relative to DMSO. Shown are the representative blot from three
independent experiments. i Dot blot showing levels of 5hmC at 2 and 14-day timepoints in cells from panel h. Shown are 3 replicates for each timepoint with
methylene blue staining (DNA) as loading control. Signal quantified by image studio software is a shown as ratio (PLX4032/DMSO). j DNA demethylation at the
TET1 promoter-CGI in cells from panel h. Boxplots show the methylation difference (PLX4032-DMSO) measured by bisulfite-pyrosequencing at 61 CpGs (green
circles) with median (line) and mean (red circles). P values were calculated with Wilcoxon rank-sum test
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Fig. 5 TET1 and TET2 are repressed in conditional Braf-V637E knock-in mice. aTET1, TET2, and Mlh1 mRNA expression in the proximal small intestine of
mutant BrafV637E mice (n = 13) relative to wild-type BrafWT mice (n = 5). Shown are the median (line) and mean (red circle). P values were calculated
with Welch two sample t-test. b Differential methylated probes either hypermethylated (red) or hypomethylated (green) in BrafV637E mice versus BrafWT

mice. Numbers of probes are at the top and number of samples are shown as n. c Experimental set up underlying samples used for genome-wide
methylation analysis on mouse tilling array (NimbleGen) taken from mice either at less than 13-week (< 13 weeks) or more than 55-week (> 55 weeks)
timepoint (upper). Box plots showing average DNA methylation at hypermethylated probes (744) in BrafWT and BrafV637E mice at < 13- or > 55-week
timepoints. Plotted are the input-normalized intensity levels on y-axis (log2) with medians (line) and means (red circle). P values were calculated with
Wilcoxon rank-sum test. d Scatter plot showing methylation in BrafV637E mice at < 13 or > 55-week timepoint. Plotted are the input-normalized
intensity levels (log2) of hypomethylated (green) or hypermethylated (red) DMPs. The 346 probes methylated at > 55-week timepoint are indicated in
the box. P values were calculated with Wilcoxon rank-sum test

Noreen et al. Clinical Epigenetics          (2019) 11:196 Page 9 of 17



induction in mice [32]. Three-hundred-forty-six probes
showed hypermethylation only in tissue of > 55-week-
old mice, and the methylation at these sites occurred
only in BrafV637E but not BrafWT mice of the same age,
suggesting that the underlying cause is the Braf muta-
tion. Taken together, these results demonstrate that per-
sistent oncogenic Braf signalling is sufficient to
deregulate TET expression and induce progressive wide-
spread DNA methylation changes.

BRAFV600E-TET directed targeted DNA hypermethylation
has the potential to drive CIMP carcinogenesis
Pathway analyses of CIMP-CpG-associated genes revealed
a specific functional link with developmental pathways
often mutated in colon cancer [33–36], such as WNT
(wingless-related integration site), HH (hedgehog), and
basal cell carcinoma (TGF and p53 signalling pathways).
By contrast, CCN-CpG-associated genes were related to
genes of the intestinal immune network, cell adhesion,
and cardiomyopathy function (Fig. 6a). Hypermethylation
at CIMP-CpGs, much less at CCN-CpG, correlated
inversely with mRNA expression at associated genes (Fig.
6b), corroborating a functional impact of CIMP-CpG
hypermethylation on these genes and, hence, pathways.
These observations resemble the molecular and functional
features associated with two main consensus molecular
subtypes (CMS1/CMS2) of colon carcinogenesis, recently
identified on the basis of gene expression analyses [16,
17]. Intersecting genes previously identified as acquiring
mutations in colon tumorigenesis [37] with CIMP-CpG-
associated genes, identified 74 genes with functions in sig-
nal transduction (LEF1, MEF2C, RARB), disease (PTEN,
ITGB3, FN1), and development (EPHB6, EPHA3). Not-
ably, many of these genes, including the tumor suppres-
sors BMP6, EPHB6, ITGBP3, were downregulated in
CIMP-CC (Fig. 6c). Together, these data suggest that epi-
genetic dysregulation can compensate for genetic muta-
tion to drive CIMP cancer progression.

Discussion
Carcinogenesis follows evolutionary principles whereby
progressive genetic and epigenetic change creates pat-
terns of molecular dysregulation that cause heteroge-
neous subtypes of disease. In CC, the “classical”
adenoma-carcinoma sequence is well aligned with pro-
gressive genetic mutation [2], but the contribution of
epigenetic change, most prominent in CIMP-CC devel-
oping through the “serrated” pathway, has remained elu-
sive. In this study, we compared CC-subtypes with
HNM to define pan-CC-specific DNA methylation
changes. This approach, in particular, identified two
classes of CpGs with distinct hypermethylation proper-
ties in tumorigenesis along the “classical” and the “ser-
rated” pathways caused by distinct underlying

mechanisms. CCN-CpGs showed hypermethylation in
all CCs, had comparably high base levels of methylation
in the HNM that are subject to change mainly through
an age-dependent, lifestyle-modulated process. CIMP-
CpGs, on the other hand, were hypermethylated specific-
ally in CIMP-CCs, showed low-base-level methylation in
the HNM and gain significant methylation only through
genetically controlled repression of TET1 and TET2
DNA demethylases, which is apparent already in SSA/P
precursors.
Given that CIMP is highly correlated with female gen-

der [38] and CC has features distinct from rectal cancer
[39], we restricted our analysis to the female gender and
the proximal and distal colon (no rectum), and this ap-
plied also to all published data sets used in this study, in-
cluding the 56 out of 125 cancer samples from Hinoue
and coworkers [20]. This was to increase discriminative
power within the cohort. Consistently, as CIMP-low
methylation is significantly more common in men [40],
our cluster analysis did not reveal this category. There-
fore, our observations and conclusions cannot be dir-
ectly extended to the male population.
While the BRAFV600E mutation has been correlated

with TET silencing [13] and associated with SSA/P spe-
cific DNA methylation [41], the underlying causality has
not been established experimentally. Here, we establish
BRAFV600E as the cause of transcriptional repression of
TET DNA demethylases, which generates a reversible
hypermethylation phenotype early in CC carcinogenesis.
The factor(s) causing BRAFV600E mutation and the initial
dysregulation of TET1 and TET2 in response to
BRAFV600E activation, still remains to be determined. It
was shown recently that BRAFV600E induces silencing of
hMLH1 and other CIMP genes through phosphorylation
of the transcriptional repressor MAFG [42]. We there-
fore investigated whether BRAFV600E-induced repression
of TET genes is MAFG mediated as well. Ectopic
BRAFV600E expression in our CC cell models did not
alter MAFG levels (Additional file 1: Figure S2) nor did
it repress hMLH1 (Fig. 4g), but it did repress TET and
CIMP marker genes (Fig. 4b, g). In addition, repression
of TET genes was apparent in SSA/Ps that still expressed
hMLH1 (Fig. 2a). Consistent with these observations, it
has been shown that silencing of hMLH1 in CIMP car-
cinogenesis is a relatively late event [6, 43, 44]. We
therefore conclude that MAFG is not responsible for
BRAFV600E-induced TET1 and TET2 repression and
CIMP-CpG hypermethylation early in CC tumorigenesis
but may become relevant later in CIMP carcinogenesis
for silencing of hMLH1 and other CIMP genes. The
identification of BRAFV600E mutated CIMP cancers lack-
ing hMLH1 methylation and MSI [27] further docu-
ments that CIMP and hMLH1 silencing can be
uncoupled and therefore do not have a single common
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underlying defect. TET silencing may thus contribute to
CIMP-mediated tumorigenesis in CC that may or may
not include hMLH1 methylation [13].

Indeed, clinical data suggest that CIMP is established
early in the “serrated” CC pathway and is associated with
older patient age [27]. We show that tissue methylation
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levels at CIMP-CpGs increase from BRAFV600E SSA/P to
CIMP-CC in humans and from BrafV637E young to old
mice. This suggests that mutated BRAF-mediated TET re-
pression is a prerequisite for early CIMP establishment,
but not per se determining SSA/P progression. Rapid tran-
sition to cancer was suggested to occur in dysplastic SSA/
P, in conjunction with loss of hMLH1 expression, follow-
ing a prolonged dwell time of SSA/P without dysplasia
[45]. Our data are consistent with hMLH1 inactivation oc-
curring late in CIMP-carcinogenesis, subsequent to
BRAFV600E-mediated TET repression in SSA/P. It is there-
fore plausible that hMLH1 hypermethylation and silencing
is a late consequence of BRAFV600E-induced TET repres-
sion in SSA/P, which then define the onset of a mutator
phenotype and a rapid progression to cancer. This may
explain the over-representation of CIMP and MSI in post-
colonoscopy CC (PCCC) [46, 47]. We therefore propose
that stable TET1 and/or TET2 silencing by promoter
methylation is a risk factor for hMLH1 silencing and
PCCC.
Previously, stable transfection of BRAFV600E in

Colo320 cells showed no overall increase in DNA hyper-
methylation [48]. Assessing the methylation status 14
days following BRAFV600E transduction, however, we ob-
served widespread gains and losses of DNA methylation
(Fig. 4d). Amongst hypermethylated CpGs were several
genes of the CIMP marker panel defined by Hinoue and
coworkers (Fig. 4f) [20]. There are several possible expla-
nations for these discrepancies; (i) previous analysis [48]
was done by the GoldenGate array (illumina) technology,
which has far lower CpG representation compared to
the EPIC array (1536 vs. > 850,000) used for analyses,
(ii) genes that acquire methylation later in tumor pro-
gression may not show differential methylation in short-
time-course experiments performed in cell culture; i.e.
timing and culture conditions may have been different
in the experiments.
Based on our findings, we propose a model whereby

DNA hypermethylation at CCN-CpGs is mainly an effect
of tissue aging and exposure that accompanies carcino-
genesis through the “classical” pathway. By contrast,
hypermethylation at CIMP-CpGs is the result of a genet-
ically controlled, deterministic mechanism that shapes
carcinogenesis through the “serrated” pathways (Fig. 6d).
Overall, the data suggest a stepwise establishment of
CIMP-CC. As the TET1 and TET2 promoters are both
targets for TET1 binding [49] and TET-dependent de-
methylation themselves [50, 51] (Additional file 1: Figure
S4), initial BRAFV600E-induced repression of the TET
genes will predisposes their promoters to hypermethyla-
tion, which will epigenetically stabilize their repressed
state. Ultimately, TET1 and TET2 silencing causes a
widespread DNA demethylation defect at TET1/TET2
targeted loci and, hence, establishes full-blown, stable

CIMP detectable in CC (Fig. 6d). Progressive hyperme-
thylation can affect and silence the promoter of hMLH1
at a later stage, thereby aggravating genetic instability by
establishing a mutator phenotype. Exactly how differen-
tial hypermethylation contributes to subtype-specific CC
initiation, progression, and clinical heterogeneity, includ-
ing the anatomic location and gender predilection of
CIMP-CC, remains unclear. Notably, however, the epi-
genetic dysregulation ensuing by BRAFV600E-driven
CIMP has the potential to effect functional changes
along the “serrated” CC pathway that are achieved by
genetic mutation in the “classical” pathway (Fig. 6e). Dif-
ferential contributions of aberrant DNA methylation and
genetic mutation establish functionally equivalent
changes in key pathways of carcinogenesis and, yet,
shape characteristic phenotypes of CC subtypes.

Conclusions
Our data indicate an intimate functional crosstalk be-
tween genetic mutation and epigenetic aberrations, par-
ticularly in the “serrated” pathway. This work is built
upon and expands existing knowledge about the CIMP
and act as conceptual framework that will help unravel
the functional significance of CIMP in colon cancer and
elsewhere. Besides this conceptual advance, the finding
that age- and genetically-driven DNA hypermethylation
shows distinct kinetics, contributions, and patterns in
nonCIMP- and CIMP-CC has clinical implications. The
identification of CC subtype-specific DNA methylation
signatures has clinical relevance for identifying bio-
markers in the assessment of subgroup-specific cancer
risk and disease progression and to improve preventive
and early detection interventions in CC. Further explor-
ation of important insights into the mechanisms by
which BRAFV600E regulates TET1 serve as a knowledge
base that can be exploited for therapeutic benefit.

Methods
Establishment of stable BRAFV600E cell lines
Colo320 and Caco2 cells stably expressing oncogenic
BRAF were established using full-length BRAFV600E

cloned into self-inactivating bicistronic lentivirus expres-
sion vector (PLV401) containing the CMV promoter via
LR reaction (Invitrogen). The plasmid with eGFP only
was used as control. Both plasmids were kindly provided
by Dr. G. Lizee, Department of Melanoma Medical On-
cology, University of Texas, and details are described
previously [52]. Expression vectors were co-transfected
with pCMV-VSV-G (Addgene, 8454) and pCMV-dR8.2
dvpr (Addgene, 8455) into HEK293T cells using Lipofec-
tamine 2000 (Invitrogen). Viral supernatants were col-
lected at 48, 72, and 96 h, pooled and concentrated
using the Lenti-X Concentrator (Clontech) according to
manufacturer instructions. Lentiviral particles were
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quantified by means of the Lenti-X p24 rapid titre
ELISA Kit (Clontech). Aliquots of viral particles were
frozen at – 80 °C. For lentivirus transduction, Colo320
in RPMI-1640 and Caco2 in Eagle's minimum essential
medium (EMEM) were cultured in a 24-well plate at a
density of 1 × 105 cells/well 24 h before transduction.
Cells were incubated with lentivirus-containing medium
supplemented with 8 μg/ml polybrene (Sigma-Aldrich)
for 24 h. After exchanging with fresh medium, cells were
grown for 14 days. All further experiments were carried
out 14 days after transduction in two independent cell
populations either stably expressing BRAFV600E

(brafV600E) or eGFP control (gfp).

Western blot
Cells were lysed for 30 min on ice in lysing buffer (50 mM
Na-P buffer pH 8, 125 mM NaCl, 1% NP-40, 500 μM
EDTA, 1 mM DTT, 1 mM PMSF) supplemented with 1
cOmplete EDTA-free protease inhibitor cocktail solution
(Roche) and 1X phosphatase inhibitor (PhosStop, Roche).
Supernatant was collected after lysate centrifugation at 4
°C for 30 min at 12,000 rpm. Protein concentrations were
determined with Bradford assays (Bio-Rad). Equal amount
of protein (40 μg) were loaded into polyacrylamide gels
(4–20% Mini-Protean TGX Precast gels, Bio-Rad). Candi-
date proteins were detected with antibodies against TET1
(Abiocode: R1084-1, Sigma: SAB2700730), TET2 (Abio-
code: R1086-2b), and MAFG (Biotechne: MAB3924) pro-
teins. GAPDH (Sigma: G9545) serves as loading control.
Total 2–4 independent blots were performed with each
antibody per experiment condition.

qRT-qPCR
Total RNA was extracted using RNeasy Mini Kit (Qiagen),
and reverse transcription was performed by RevertAid
First Strand cDNA Synthesis system (ThermoScientific),
followed by qRT-PCR using QuantiTect SYBR Green Kit
(Qiagen). ACTB and GAPDH were used as internal refer-
ences for normalization. Primers were not isoform specific
and therefore measure expression of TET1 (TETFL and
TET1ALT) and TET2 (isoform a,b) collectively. See Add-
itional file 1: Table S1 for primer sequences.

Cell cultures and drug treatments
The colon cancer cell lines were grown in growth
medium according to ATCG supplemented with 20%
fetal calf serum (FCS, Sigma), 1% Penicillin/streptomycin
(P/S, Sigma) and 200 mM L-GlutaMax (Sigma). For drug
treatment, Co115 cells (5 × 106 cells/15-cm dish) were
cultured in growth medium containing 5% serum with 2
μM of PLX4032 (Selleck chemical) or DMSO (vehicle)
for 56 days with fresh media changes with drug or ve-
hicle every day. After 28 days, cells were cultured with
or without further addition of drug and vehicle until 56

days. Co115 and Colo320 cells were treated with 0.1 μM
of 5-Aza-cytidine (Aza) or DMSO (vehicle) for 5 days
with fresh media changes with drug or vehicle every day.

Dot blot assay
Dot blots were performed using antibodies of 5-
hydroxymethylcytosine (5hmC; Active Motif: 39769).
Briefly, genomic DNAs were blotted onto a H-bond N+
nylon membrane (Amsherham) and dried for 15 min.
Membrane-bound DNA was denatured in 400 mM
NaOH for 4 h. Membrane was washed twice with SSC
buffer pH 7 (300 mM NaCl, 34 mM sodium citrate) and
blocked with 10% milk in TBST (20 mM Tris-HCl
pH7.5, 150 mM NaCl, 0.1% Tween 20) for 1 h at room
temperature (RT). After incubation, membrane was
washed three times with TBST. 5hmC was detected with
antibodies anti-5hmC antibody (5hmC; Active Motif:
39769). To ensure equal spotting of total DNA on the
membrane, the same blot was stained with 0.02% methy-
lene blue in 0.3 M sodium acetate (pH 5.2).

Bisulfite pyrosequencing
Bisulfite-converted DNA was used to measure methyla-
tion levels by pyrosequencing as described previously
[19]. See Additional file 1: Table S2 for primer
sequences.

Genome-wide DNA methylation analysis in human
samples and cell lines
Primary cancers, paired normal mucosa, and cancer cell
lines data
Genome-wide DNA methylation of primary cancers (n =
8) and 7 cm proximal to the primary cancer adjacent
normal mucosa (paired normal, n = 8) were measured
using HM27K array. Samples were obtained from colon
cancer patients undergoing surgical resection at the de-
partment of surgery, canton of Aargau, Switzerland
under the ethical approval (Ref.Nr. EK: 2004/053). All
patients gave their informed consent for the use of their
specimens for research purposes. All samples were
stored at – 80 °C in RNAlater until further processing.
All primary cancers were histologically confirmed
adenocarcinomas.
Statistical analyses were performed on logit transform-

ation of β-values known as M-values [53], whereas β-
values were used for biologic interpretation. For probe-
wise differential methylation analysis, a model adjusting
for colonic location and batch effect was fitted, using the
limma package [54]. Statistical tests are performed as de-
scribed in figure legends, and when possible, adjusted P
values calculated by limma were used to assess for sig-
nificance, with a threshold of adjusted P < 0.05.
Methylation profiles for Caco2, Co115, Sw620 were

generated using HM450K array. Illumina GenomeStudio
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software was used to extract the raw signal intensities of
each CpG. All computational and statistical analyses
were performed using R and Bioconductor. All prepro-
cessing, correction and normalization steps were per-
formed using complete pipeline adapted from
methylumi and lumi R packages as described earlier
[55]. Background correction was performed based on
un-hybridized negative control probe intensities, and
then, background-subtracted signal intensities were nor-
malized with DASEN [55]. To make results comparable
between different arrays, CpGs corresponding to
HM27K array were used further. Methylation levels at
CCN-CpGs and CIMP-CpGs were used for the analysis.

Stable-cell lines COLO320 and Caco2 data analysis
Genomic DNA was extracted using QIAamp DNA mini
kit (Qiagen) according to the manufacturer's instruc-
tions. DNA bisulfite conversion was carried out using
EZ DNA Methylation kit (Zymo Research) by following
manufacturer's manual. Bisulfite-converted DNA was
analyzed using Illumina's EPIC array (for Colo320) and
HM450 (for Caco2). Illumina GenomeStudio software
was used to extract the raw signal intensities. R and the
Bioconductor packages minfi (for EPIC) and methylumi-
and lumi-based complete pipeline (for HM450) were
used to process and normalize the raw data. Probes with
poor signals (P > 0.01) were not included. All probes
were matched to the human GRCh37/hg19. Chromo-
some X- and Y-linked probes were removed from subse-
quent analysis.
For Colo320-transduced cell populations, any CpG

was called differentially methylated CpGs if it was sig-
nificantly (FDR adjusted P < 0.05) differentially methyl-
ated in brafV600E versus gfp with mean β-value
methylation difference > 10%. Since in Caco2, transduc-
tion efficiency was low, leading to more heterogeneous
cell population, mean β-value of both replicates resulted
in no significant differential methylated CpG in brafV600E

versus gfp. To account for the variability between repli-
cates, we then performed pair-wise analyses in which
each experimental sample was compared to its respect-
ive GFP control. A CpG was called differential methyl-
ated, if the β-value methylation difference between
brafV600E and respective control gfp was > 5% in both
replicates. In order to compare EPIC and HM450K with
HM27K, we only selected those probes that were mea-
sured on all three platforms.

Public healthy colon, primary cancers, and lesions data
analysis
Genome-wide DNA methylation of healthy normal mucosa
samples (HNM, n = 178), tubular adenomas (TAs, n = 14)
with 6 paired normal, and primary colon cancers (n = 56)
were obtained from Gene expression Omnibus (GEO;

GSE48988 [19], GSE48684 [22], GSE25062 [20]). Methyla-
tion was profiled by Illumina HM27K or by HM450K array.
DNA methylation of additional TAs (n = 8) and sessile ser-
rated adenomas/polyps (SSA/Ps, n = 11) with paired normal
mucosa were profiled by bisulfite sequencing (E-MTAB-
6952) [56].
Clustering analysis was performed by recursively parti-

tioned mixture model (RPMM) on most variable CpG sites
(5254) across the cohort, with variability ranked by standard
deviation (SD > 0.16). This algorithm was implemented using
the RPMM Bioconductor package. For probe-wise differen-
tial methylation analysis, a model adjusting for colonic loca-
tion and batch effect was fitted using the limma package
[54]. Statistical analyses were performed on logit transform-
ation of β-values known as M-values [53], whereas β-values
were used for biologic interpretation. P values were adjusted
to control for the false discovery rate (FDR) using the Benja-
mini–Hochberg method. For the log2 fold change (logFC)
calculation, the differences between the averages of groups
were considered. Significantly differentially methylated CpGs
in cancer subgroups were defined as those having an
adjusted P < 0.0001, logFC > 2 and absolute methylation dif-
ference to healthy colon samples > 10%. The CpGs differen-
tially methylated in both cancer subgroups (common) were
further tested as following: if common DMC was signifi-
cantly (P < 0.01) more methylated (absolute methylation dif-
ference > 10%) in CIMP than nonCIMP cancers, it was then
defined as CIMP-CpG otherwise CCN-CpG.
Methylation in precursor lesions was measured either

by HM450K (TAs; GSE48684 [22]) or by bisulfite se-
quencing (TAs and SSA/Ps; E-MTAB-6952 [56]). To ac-
count for different detection limit between two
platforms, we used absolute methylation difference be-
tween precursor lesions to the paired normal mucosa
profiled on the same platform. For bisulfite sequencing
data, methylation levels corresponding to CCN-CpGs
and CIMP-CpGs were computed. UCSC lift over func-
tion was used to convert the hg18 CpG sites coordinates
to hg19. Methylation proportions (range 0 to 1) were de-
termined as counting number of methylated reads/ total
number of reads. The median methylation levels be-
tween lesions and cancers were compared by Wilcoxon
test. Age- and lifestyle-associated hypermethylated CpGs
were identified as described previously. Methylation rate
ratio (MRR) was calculated as the rate of CCN-CpGs/
rate of CIMP-CpGs or rate of users/rate of nonusers.
Methylation profiles of Colo320, HT29, and Colo2015
were published (GSE35573) [57]. Methylation levels at
CCN-CpGs and CIMP-CpGs were used for the analysis.

Genome-wide DNA methylation analysis in conditional
BrafLSL-V637 knock-in mice
Mucosa from proximal small intestine was sampled from
previously established murine Vil-Cre+/-; BrafLSL-V637E/+
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knock-in mice and control BrafWT mice [31]. Six sam-
ples were used to generate genome-wide DNA methyla-
tion profiles using Roche NimbleGen Mouse DNA
Methylation 3x720K CpG Island plus RefSeq Promoter
Arrays. The array can assay 20,404 promoter regions, 22,
881 transcripts, and 15,980 CpG Islands in mouse.
Experimental-enriched and genomic input fractions for
each sample were labelled with Cy5 and Cy3, respect-
ively, following instructions in the NimbleGen Array
User Guide DNA Methylation Arrays (Version 7.2).
Labelled fractions were pooled and co-hybridized to the
arrays. Following hybridization and washing, arrays were
scanned using NimbleGen MS 200 Microarray Scanner.
For each array feature, a scaled log2 ratio was calculated
as the ratio of the input signals intensity for the experi-
mental and control samples co-hybridized. Scaling was
performed using Tukey-bi-weight scale. Differentially
methylated probes between BrafV637E and BrafWT were
identified by comparing log2 intensity ratios for each
probe. Probes were analysed individually, rather than ag-
gregated into larger windows or collapsed by gene pro-
moter, in order to retain high resolution of the tiling
array platform and to detect region-specific changes that
may be masked by analysis of larger, smoothed windows.
Probe sequence represented in the mouse genome only
once were selected. This resulted 673,940 probes for fur-
ther analysis. All analyses were performed using R pack-
ages Ringo and limma. Array probes were considered
differentially methylated at adjusted P < 0.05 and a
logFC > 2. The mm9 genome build was selected for the
analysis.

Gene expression analysis
Gene expression (GSE25070) [20] of 17 cancers and in
paired normal mucosa was measured previously by Illu-
mina Ref-8 whole-genome expression BeadChip. Probe-
wise differential expression analysis was performed using
the limma package. FDR-adjusted P < 0.05 was consid-
ered as significant difference.

TET expression analysis using TCGA data
The Z-scores of mRNA expression data from colon can-
cer studies were retrieved from the Cancer Genomics
Data Server (CGDS) through the cBioPortal for Cancer
Genomics http://www.cbioportal.org, using the CGDS-R
package. Z-scores were available for 274 female colon
cancer samples (BRAFV600E; n = 46, KRASG12/13; n = 94,
BRAFWT/KRASWT; n = 134), whose mRNA expression
data were produced on the same platform (RNA-seq ,
illumin). The scores were calculated using cancer diploid
for each gene as the reference population, and individual
overexpressed and underexpressed genes were defined
by Z-scores, respectively.

Mouse Tet1 and Tet2 ChIPseq
Tet1 ChIPseq data from mESC (GSM659799) [49] and
Tet2 ChIPseq data from mouse bone marrow
(GSM897581) [50] were published previously.

Statistical analyses
All analyses were conducted using the statistical software
R (version 3.4.4). The P values for boxplots in Figs. 1h,
2b–d, 4j, and 5c were calculated using Wilcoxon rank-
sum test and for barplots in Figs. 2a, 3d, 4b, g and h, and
5a were calculated using Welch two sample t-test. Odds
ratios were calculated using Fisher's exact test in Fig. 4e. P
values for DNA methylation and gene expression correl-
ation in Fig. 6b were calculated by Pearson correlation.
The P values of < 0.05 were considered statistically signifi-
cant for all tests. Pathway enrichment within CCN-CpGs
and CIMP-CpG-associated genes was determind using
Kyoto Encyclopedia of Genes and Genomes (KEGG,
http://www.genome.jp) database. Unique pathways that
were below the adjusted P value of 0.01 were reported in
Fig. 6a. Detailed statistical and bioinformatics analyses are
described together with relevant data set.
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